If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7a^2+13a+6=0
a = 7; b = 13; c = +6;
Δ = b2-4ac
Δ = 132-4·7·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-1}{2*7}=\frac{-14}{14} =-1 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+1}{2*7}=\frac{-12}{14} =-6/7 $
| 9(x+6)=5(x12) | | 3(2x+3)=10x+8-4x+1 | | 95-112=-8(-4y)-17(2y)+y | | 2x+2(x+5)=24 | | 1000(9x−10)=50(704+100x) | | 9x09=36 | | 4y-42=2y-84 | | (3.5+x)/(3.5-x)=11/3 | | 20.16=r6.3 | | 4w+10=-9+7w+8w | | 3.1=y-8.8 | | 1/14(16x+8)=-2 | | 5x-16=30+28x | | Yx20=x | | 4.5x+120=0.5x+45 | | -3x+10=9x-30 | | 5y+10=21/2y+15 | | 5(2x+18)=4(x+30) | | -2+6x-4x=26 | | X20=y | | 2x=12 x=6 | | 10(10+7f)=6f | | 4x+3+7x-10=59 | | 2x-9=3 | | 39-4r=-7(8r+2)+1 | | 7(x-1)=5(x-01) | | -3x+10=9x=-30 | | 6x+4-5x+x=-17 | | -8x+10=-10x+28 | | 2x-3x-7=x+1 | | 4=3/4m+6 | | −6x=−30 |